Forecasting, Behavioral Analysis, and What-If Scenarios with Python

Description

Overview

Forecasting, Behavioral Analysis, and What-If Scenarios with Python is an advanced three-day course that combines the power of forecasting, behavioral analysis, and what-if scenario analysis using Python. The course equips data analysts, data scientists, and business professionals with the skills and techniques required to analyze historical data, identify behavioral patterns, forecast future trends, and conduct what-if scenario analysis to evaluate potential outcomes.

Working in a hands-on learning environment led by out expert practitioner, you’ll explore advanced Python libraries and techniques for forecasting, behavioral analysis, and what-if scenario modeling. The course covers advanced forecasting methods such as time series analysis, regression-based forecasting, and machine learning-based forecasting. Participants will also learn how to analyze behavioral patterns through clustering, segmentation, and sentiment analysis. In addition, the course introduces what-if scenarios, enabling participants to simulate and evaluate different scenarios to make informed decisions.

Learning Objectives

This course is approximately 50% hands-on, combining expert lecture with real-world demonstrations and group discussions with machine-based practical labs and exercises.  

Working in a hands-on learning environment, guided by our expert team, attendees will learn to:

  • Understand advanced concepts and techniques in forecasting, behavioral analysis, and what-if scenarios.
  • Gain proficiency in applying Python libraries and tools for forecasting, behavioral analysis, and what-if scenario modeling.
  • Develop forecasting models using time series analysis, regression, and machine learning algorithms.
  • Analyze and interpret behavioral patterns through clustering, segmentation, and sentiment analysis. • Conduct what-if scenario analysis to evaluate potential outcomes and make informed decisions.
  • Gain practical experience through hands-on labs and exercises using real-world datasets.

Audience

This course is intended for data analysts, data scientists, business analysts, and professionals who want to leverage Python for forecasting, behavioral analysis, and what-if scenario analysis tasks. Participants should have a solid understanding of Python programming and basic data manipulation skills.

Course Agenda

Course Topics / Agenda

Please note that this list of topics is based on our standard course offering, evolved from typical industry uses and trends. We can work with you to tune this course and level of coverage to target the skills you need most. Course agenda, topics and labs are subject to adjust during live delivery in response to student skill level, interests and participation.

Day 1: Introduction to Forecasting

  1. Overview of Forecasting
  • Importance and applications of forecasting
  • Types of forecasting problems
  1. Time Series Analysis
  • Introduction to time series data
  • Handling time series data in Python
  • Exploratory data analysis for time series
  1. Forecasting Methods
  • Moving averages
  • Exponential smoothing methods
  • ARIMA models
  • Seasonal decomposition of time series
  1. Regression-Based Forecasting
  • Introduction to regression analysis
  • Building regression models for forecasting
  • Evaluating regression models

Day 2: Machine Learning-Based Forecasting

  1. Machine Learning for Forecasting
  • Introduction to machine learning algorithms for forecasting
  • Feature engineering for forecasting
  • Training and evaluating machine learning models
  1. Ensemble Methods for Forecasting
  • Bagging and random forests
  • Boosting methods
  • Stacking models
  1. Neural Networks for Time Series Forecasting
  • Introduction to neural networks
  • Building and training neural network models for forecasting
  • Time series forecasting with recurrent neural networks (RNNs) and LSTM networks
  1. Evaluating and Improving Forecasting Models
  • Performance metrics for forecasting
  • Cross-validation and model evaluation techniques
  • Techniques for model improvement and optimization

Day 3: Behavioral Analysis and What-If Scenarios

  1. Introduction to Behavioral Analysis
  • Understanding behavioral data
  • Applications of behavioral analysis
  1. Clustering and Segmentation
  • Clustering techniques for behavioral analysis
  • Segmentation of customers or users based on behavior
  • Practical examples and case studies
  1. Sentiment Analysis
  • Introduction to sentiment analysis
  • Text preprocessing techniques
  • Sentiment analysis using Python libraries
  1. Behavioral Pattern Recognition
  • Analyzing sequential behavioral data
  • Hidden Markov Models (HMMs) for behavior recognition
  • Application of behavior recognition models
  1. Introduction to What-If Scenarios
  • Understanding what-if scenario analysis
  • Identifying key variables and factors
  • Creating scenarios and defining assumptions
  1. Modeling What-If Scenarios in Python
  • Implementing what-if scenarios using Python libraries
  • Simulating different scenarios and outcomes
  • Analyzing and evaluating scenario results

Similar courses

If you are someone with existing SQL or SQL Server knowledge (or someone highly versed in different data repositories), this is the Power BI course for you. This course is best for students with high PC skills and are experienced/comfortable with technology - if that isn't you, our one or two day Power BI classes might be a better fit for you.

More Information

This is a great class for an overview of Power BI/if Power BI isn't a central part of your job role.

More Information

Doing data analysis work is about more than learning a software program (Excel, Power BI, Tableau, etc.) - you need to understand the concepts and theory too. This one day course gets you up to speed (and can be useful either before or after your software classes).

More Information

Understanding DAX is critical for Power BI users. It is required that you are familiar with Power BI and (if attending virtually) that you have Power BI on the PC to be used for this training event in order to take this class

More Information

This is a great class for an overview of Power BI/if Power BI isn't a central part of your job role.

More Information

If you are someone with existing SQL or SQL Server knowledge (or someone highly versed in different data repositories), this is the Power BI course for you. This course is best for students with high PC skills and are experienced/comfortable with technology - if that isn't you, our one or two day Power BI classes might be a better fit for you.

More Information

This class is designed for people new to using AI tools, such as ChatGPT - Gemini - or Copilot, in the workplace. People with experience using these tools for their job functions may find some of the content covered to be beginner or overview level.

More Information

This class is designed for people new to using AI tools, such as ChatGPT - Gemini - or Copilot, in the workplace. People with experience using these tools for their job functions may find some of the content covered to be beginner or overview level.

More Information

Understanding DAX is critical for Power BI users. It is required that you are familiar with Power BI and (if attending virtually) that you have Power BI on the PC to be used for this training event in order to take this class.

More Information

No previous experience of Copilot required; however, the student will require an existing Copilot for Microsoft 365 license to participate in hands on exercises, as there is currently no trial license available to Microsoft partners for this product.

More Information

This class is designed for people new to using AI tools, such as ChatGPT - Gemini - or Copilot, in the workplace. People with experience using these tools for their job functions may find some of the content covered to be beginner or overview level.

More Information

This class is designed for people new to using AI tools, such as ChatGPT - Gemini - or Copilot, in the workplace. People with experience using these tools for their job functions may find some of the content covered to be beginner or overview level.

More Information

4 Half Day Sessions

More Information

This class is a follow-up to the more basic/entry level AI classes offered at Logical Operations. Students in this class should have prior experience in an AI course offered by Logical Operations. It is recommended that students have previously taken either one of our "How to Create and Use a Prompt" classes or one of our "Getting the Most out of your Spreadsheets/Documents/Presentations with GenAI" classes.

More Information